Immune system of Our Body
The immune system is a system of biological structures and processes within an organism that protects against disease. To function properly, an immune system must detect a wide variety of agents, known as pathogens, from viruses to parasitic worms, and distinguish them from the organism's own healthy tissue. In many species, the immune system can be classified into subsystems, such as the innate immune system versus the adaptive immune system, or humoral immunity versus cell-mediated immunity.
Pathogens can rapidly evolve and adapt, and thereby avoid detection and neutralization by the immune system; however, multiple defense mechanisms have also evolved to recognize and neutralize pathogens. Even simple unicellular organisms such as bacteria possess a rudimentary immune system, in the form of enzymes that protect against bacteriophage infections. Other basic immune mechanisms evolved in ancient eukaryotes and remain in their modern descendants, such as plants and insects. These mechanisms include phagocytosis, antimicrobial peptides called defensins, and the complement system. Jawed vertebrates, including humans, have even more sophisticated defense mechanisms,[1] including the ability to adapt over time to recognize specific pathogens more efficiently. Adaptive (or acquired) immunity creates immunological memory after an initial response to a specific pathogen, leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.
Here's how it works:
When antigens (foreign substances that invade the body) are detected, several types of cells work together to recognize them and respond. These cells trigger the B lymphocytes to produce antibodies, specialized proteins that lock onto specific antigens.
Once produced, these antibodies continue to exist in a person's body, so that if the same antigen is presented to the immune system again, the antibodies are already there to do their job. So if someone gets sick with a certain disease, like chickenpox, that person typically doesn't get sick from it again.
This is also how immunizations prevent certain diseases. An immunization introduces the body to an antigen in a way that doesn't make someone sick, but does allow the body to produce antibodies that will then protect the person from future attack by the germ or substance that produces that particular disease.
Although antibodies can recognize an antigen and lock onto it, they are not capable of destroying it without help. That's the job of the T cells, which are part of the system that destroys antigens that have been tagged by antibodies or cells that have been infected or somehow changed. (Some T cells are actually called "killer cells.") T cells also are involved in helping signal other cells (like phagocytes) to do their jobs.
Antibodies also can neutralize toxins (poisonous or damaging substances) produced by different organisms. Lastly, antibodies can activate a group of proteins called complement that are also part of the immune system. Complement assists in killing bacteria, viruses, or infected cells.
All of these specialized cells and parts of the immune system offer the body protection against disease. This protection is called immunity.
The major components of the immune system include:
Lymph nodes:
Small, bean-shaped structures that produce and store cells that fight infection and disease and are part of the lymphatic system — which consists of bone marrow, spleen, thymus and lymph nodes, according to "A Practical Guide To Clinical Medicine" from the University of California San Diego (UCSD). Lymph nodes also contain lymph, the clear fluid that carries those cells to different parts of the body. When the body is fighting infection, lymph nodes can become enlarged and feel sore.
Spleen:
The largest lymphatic organ in the body, which is on your left side, under your ribs and above your stomach, contains white blood cells that fight infection or disease. According to the National Institutes of Health (NIH), the spleen also helps control the amount of blood in the body and disposes of old or damaged blood cells.
Bone marrow:
The yellow tissue in the center of the bones produces white blood cells. This spongy tissue inside some bones, such as the hip and thigh bones, contains immature cells, called stem cells, according to the NIH. Stem cells, especially embryonic stem cells, which are derived from eggs fertilized in vitro (outside of the body), are prized for their flexibility in being able to morph into any human cell.
Lymphocytes:
These small white blood cells play a large role in defending the body against disease, according to the Mayo Clinic. The two types of lymphocytes are B-cells, which make antibodies that attack bacteria and toxins, and T-cells, which help destroy infected or cancerous cells. Killer T-cells are a subgroup of T-cells that kill cells that are infected with viruses and other pathogens or are otherwise damaged. Helper T-cells help determine which immune responses the body makes to a particular pathogen.
Thymus:
This small organ is where T-cells mature. This often-overlooked part of the immune system, which is situated beneath the breastbone (and is shaped like a thyme leaf, hence the name), can trigger or maintain the production of antibodies that can result in muscle weakness, the Mayo Clinic said. Interestingly, the thymus is somewhat large in infants, grows until puberty, then starts to slowly shrink and become replaced by fat with age, according to the National Institute of Neurological Disorders and Stroke.
Leukocytes:
These disease-fighting white blood cells identify and eliminate pathogens and are the second arm of the innate immune system. A high white blood cell count is referred to as leukocytosis, according to the Mayo Clinic. The innate leukocytes include phagocytes (macrophages, neutrophils and dendritic cells), mast cells, eosinophils and basophils.
source : http://en.wikipedia.org/wiki/Immune_system , http://kidshealth.org/parent/general/body_basics/immune.html and http://www.livescience.com/26579-immune-system.html , picture from aids.gov
Pathogens can rapidly evolve and adapt, and thereby avoid detection and neutralization by the immune system; however, multiple defense mechanisms have also evolved to recognize and neutralize pathogens. Even simple unicellular organisms such as bacteria possess a rudimentary immune system, in the form of enzymes that protect against bacteriophage infections. Other basic immune mechanisms evolved in ancient eukaryotes and remain in their modern descendants, such as plants and insects. These mechanisms include phagocytosis, antimicrobial peptides called defensins, and the complement system. Jawed vertebrates, including humans, have even more sophisticated defense mechanisms,[1] including the ability to adapt over time to recognize specific pathogens more efficiently. Adaptive (or acquired) immunity creates immunological memory after an initial response to a specific pathogen, leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.
Here's how it works:
When antigens (foreign substances that invade the body) are detected, several types of cells work together to recognize them and respond. These cells trigger the B lymphocytes to produce antibodies, specialized proteins that lock onto specific antigens.
Once produced, these antibodies continue to exist in a person's body, so that if the same antigen is presented to the immune system again, the antibodies are already there to do their job. So if someone gets sick with a certain disease, like chickenpox, that person typically doesn't get sick from it again.
This is also how immunizations prevent certain diseases. An immunization introduces the body to an antigen in a way that doesn't make someone sick, but does allow the body to produce antibodies that will then protect the person from future attack by the germ or substance that produces that particular disease.
Although antibodies can recognize an antigen and lock onto it, they are not capable of destroying it without help. That's the job of the T cells, which are part of the system that destroys antigens that have been tagged by antibodies or cells that have been infected or somehow changed. (Some T cells are actually called "killer cells.") T cells also are involved in helping signal other cells (like phagocytes) to do their jobs.Antibodies also can neutralize toxins (poisonous or damaging substances) produced by different organisms. Lastly, antibodies can activate a group of proteins called complement that are also part of the immune system. Complement assists in killing bacteria, viruses, or infected cells.
All of these specialized cells and parts of the immune system offer the body protection against disease. This protection is called immunity.
The major components of the immune system include:
Lymph nodes:
Small, bean-shaped structures that produce and store cells that fight infection and disease and are part of the lymphatic system — which consists of bone marrow, spleen, thymus and lymph nodes, according to "A Practical Guide To Clinical Medicine" from the University of California San Diego (UCSD). Lymph nodes also contain lymph, the clear fluid that carries those cells to different parts of the body. When the body is fighting infection, lymph nodes can become enlarged and feel sore.
Spleen:
The largest lymphatic organ in the body, which is on your left side, under your ribs and above your stomach, contains white blood cells that fight infection or disease. According to the National Institutes of Health (NIH), the spleen also helps control the amount of blood in the body and disposes of old or damaged blood cells.
Bone marrow:
The yellow tissue in the center of the bones produces white blood cells. This spongy tissue inside some bones, such as the hip and thigh bones, contains immature cells, called stem cells, according to the NIH. Stem cells, especially embryonic stem cells, which are derived from eggs fertilized in vitro (outside of the body), are prized for their flexibility in being able to morph into any human cell.
Lymphocytes:
These small white blood cells play a large role in defending the body against disease, according to the Mayo Clinic. The two types of lymphocytes are B-cells, which make antibodies that attack bacteria and toxins, and T-cells, which help destroy infected or cancerous cells. Killer T-cells are a subgroup of T-cells that kill cells that are infected with viruses and other pathogens or are otherwise damaged. Helper T-cells help determine which immune responses the body makes to a particular pathogen.
Thymus:
This small organ is where T-cells mature. This often-overlooked part of the immune system, which is situated beneath the breastbone (and is shaped like a thyme leaf, hence the name), can trigger or maintain the production of antibodies that can result in muscle weakness, the Mayo Clinic said. Interestingly, the thymus is somewhat large in infants, grows until puberty, then starts to slowly shrink and become replaced by fat with age, according to the National Institute of Neurological Disorders and Stroke.
Leukocytes:
These disease-fighting white blood cells identify and eliminate pathogens and are the second arm of the innate immune system. A high white blood cell count is referred to as leukocytosis, according to the Mayo Clinic. The innate leukocytes include phagocytes (macrophages, neutrophils and dendritic cells), mast cells, eosinophils and basophils.
source : http://en.wikipedia.org/wiki/Immune_system , http://kidshealth.org/parent/general/body_basics/immune.html and http://www.livescience.com/26579-immune-system.html , picture from aids.gov
